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A Representation of Acoustic Waves

in Unbounded Domains

Bradley K. Alpert* and Yu Chen^

Compact, time-harmonic, acoustic sources produce waves that decay too slowly to be

square-integrable on a line away from the sources. We introduce an inner product,

arising directly from Green’s second theorem, to form a Hilbert space of these waves,

and present examples of its computation.

Keywords: electromagnetic waves, Green’s second theorem, Hilbert space, inverse

scattering, orthonormal basis, scattering

1. Introduction

Consider the scattering problem governed by the Helmholtz equation

A(p + k
2
(l + q)ip = 0 (1)

in two dimensions for a scatterer q G L2(D
)
supported in a compact domain D in the half

plane above the rr-axis. A function u : R2 —» C is referred to as a scattered wave, or an

outgoing wave, from D if it has the form

u(t)= [ H0 (k\r — r'|) 77(1*') dr' (2)
Jd

for some r\ G L2 (D). (We write Hn for the Hankel function Hn.) As is well known, u

satisfies the radiation condition

— iku = o(r
-1/2

), r = Jr
| , (3)

or
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Figure 1. The scatterer D above the x-axis.

and when restricted to a line such as the x-axis (see Figure 1), u decays at the rate of

O (r
-1/2

). Therefore u is not an L2 function and we cannot apply the standard inner product

f(x) g(x) dx. (4 )

There are several applications for which an outgoing wave may need to be sampled and

processed on a line. First, for wave scattering or propagation problems in a stratified host

medium or in a wave guide, we may have to process wave functions on a line in two dimen-

sions, or a plane in three dimensions. Secondly, even if we do not have to deal with the wave

functions on a line, it may be simpler, more convenient, or more efficient to discretize them

there, as well as in D, in order to solve the related scattering problems. Finally, we may
begin with a scatterer in a homogeneous host medium, but it may be again more simple,

convenient, efficient, or stable to deal with the scattered wave on a line, as opposed to a

closed curve containing D.

The lack of compact support of such functions makes their sampling and processing seem

difficult. We introduce in this paper an inner product and use it to construct an orthogonal

basis for all outgoing waves from D. In other words, we will present a method to efficiently

sample the outgoing wave functions on the line.

2. The Inner Product

For simplicity, we will assume that the domain D is a positive distance from, as well as

above, the rr-axis; see Figure 1 and Remark 2.4. Denote by W the linear space of functions

that are restrictions to the x-axis of the outgoing waves u(x
, y) from D. In other words, let

A : L2 (D) C°°(R) be defined by

u(x) = {Arj)(x) := [ H0 (kp) rj{x' ,y') dx' dy' (5)
Jd

with

p- [o*
- x')

2 + y'
2

\

'
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Figure 2. The scatterer D
,
semicircle CT: and half disk Br .

Then W is the range space of A. With the negative y-direction as the outward normal, we

will denote by un (x )
the normal derivative of u on the x-axis:

un (x) = -
JD

dHQ (kyJ(x-x'Y + {y-y'Y)
dy

rj{x', y') dx' dy'

[ k Hi (
kp

)
— rj(x', y') dx' dy'.

Jd P

y=

0

Therefore, for any u G W,

u(x) = 0(\x\ 1/2
), un (x) = 0{\x\ 3/2

). (6)

Theorem 2.1. For u, v G W, the bilinear form

(u, v) = -
/ \u(x) vn (x)

- v(x) un (x)] dx (7)
4 Jr

is bounded and defines an inner product for W.

Proof. The existence of the integral for (u, v) follows immediately from (6). The bilinearity

and symmetry of
(
u

,
v) are straightforward to verify. Now, we establish the positivity (u, u

) >

0 for a nonvanishing u G W. In the lower half plane consider the semicircle

Cr = {{x,y)\ x2 + y
2 = r

2
, y <0} (8)

and the half disk Br bounded by Cr and the interval [— r, r] on the a:-axis; see Figure 2. Let

v = u in Green’s second theorem

/ [u (A + k
2
)v — v • (A + k

2
)u] dx dy =

Jbr

(
9

)
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where u(x
, y) on Br is the continuation of u(x) on the line to the lower half plane; see (2)

and (5). It follows from (A + k2)u = 0 in Br that

f
r

r
- _ 1

, f r du _du

J
[u un - u un \

dx =
J |

u—-u
dn

ds. (10)

The last integral we denote by I(r). Integrating the radiation condition (3) over Cr yields

L
du— iku
on -L

It follows from (7), (10), and (11) that

ds= I ||^on
+ k

2
\uf ds — ikl(r)—t 0, r —

>

oo.

(u, «) = -Jr lim f [||^
4k r-»oo Jc dn

+ k
2
\uf ds.

(H)

(12)

Therefore, (u,w) = 0 implies that the 2-norm over [7r, 27t] of the far field u^O) is zero.

It follows from the analyticity of Uqo that u^ is zero; therefore, u vanishes outside D\ in

particular, it G W is zero.

Remark 2.2. For the time-harmonic outgoing wave u, (it, it) is a constant multiple of its

energy flux over a period and through the x-axis. The naturally induced norm ||it|| = (it, it)
1 /2

makes W a pre-Hilbert space.

The next lemma is a direct consequence of the boundedness of the linear map A and

completeness of its domain L2 (D).

Lemma 2.3. The linear space W is complete, and therefore is a Hilbert space, with the inner

product (7).

Remark 2.4. It follows from the boundedness of the kernel Ho(kp) of the integral operator

A defined in (5) that the bounded linear map A is compact, and has a singular value de-

composition. It is not difficult to show that A is compact when D and the x-axis are not

separated.

Remark 2.5. ;4n orthogonal basis for W can be computed via the SVD of A. To construct

an orthogonal basis in practice, the SVD will not be performed on A for fear of inefficiency,

but on a map related to standard layer-potentials, such as the combined-layer potential (see,

for example, [2], p. fl), whose domain is a set of functions defined on the boundary dD.

3. The Inner Product for Two Point Sources

In this section, we calculate the inner product for wave functions each generated by a point

source in D. This calculation on one hand will be useful for computing the SVD of A
or its equivalent layer potential representation (see Remark 2.5), on the other hand will

demonstrate how an outgoing wave function from D should be finitely sampled on R.
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3.1 The inner product for two monopoles

We refer to the function u(r) = H0 (k\r
— r'|) as the wave generated by a monopole at r' € R2

.

Theorem 3.1. Suppose that u, v are generated by two monopoles at b, c e D. Then the

inner product
(
u

,
v

)
depends only on the vector

a = b — c = (xa , ya ). (13)

More precisely, let a — |a| and let
(f)
= arctan (ya/xa )

be the angle formed by x-axis and a.

Then
i r<2

(u,v)=- e~
ika sin(0-4>) dQ

(
14

)n J-n/

2

Thus Re(u,u) = Jo(ka) is independent of <j>. Furthermore, when b = c € D,

(

u

,
u) = 1. (15)

Proof. The proof follows that of Theorem 2.1 by replacing the integral along a segment of

the x-axis with one along a semicircle in the lower half-plane,

(u, v) lim —
r—>oo 4

lim jr—too 4

J [««»

fJ 7T

VUn ]
dx

dv(r,6) du{r,0)'
u(r, 9 )—^—- — v(r, 9)

dr
d0. (16)

where the integrand of (16) is simplified by the far-field asymptotics of wave functions u, v

due to two monopoles.

1. Geometry of the two sources. We suppose that in cylindrical coordinates r = (r, 6)

with 9 € [7t,27t] and b = (
b,(3 ), c = (c, 7) with /3, 7 G (0, 7r); see Figure 3. The cosine law

gives the distances p = |r — b| and a = |r — c|:

p
2 = b

2 + r
2 — 2br cos (9 — (3) (17)

a2 = (? + r
2 — 2cr cos (9 — 7). (18)

From the pair of vertical sides and pair of horizontal sides of the dashed-line rectangle in

Figure 3 we observe

—a sin
(J)
= c sin 7 — b sin

—a cos <\> = c cos 7 — 6 cos /3 .

We multiply the first equation by — cos 9

,

multiply the second by sin 9
,
and add to obtain

—asin(0 - (f>)
= csin(0 — 7) — bsin(9 - (3). (19)

5



Figure 3. The source points b and c and field point r, in cylindrical coordinates.

2. Far-field asymptotics. The monopoles are given by

u(r) = H0 {kp), v{r) = H0 (ho) (20)

with their normal derivatives given by

%?-**<*'>£. rn

The derivatives dpidr and doIdr both approach 1 as r —> oo; since both terms of the

integrand are bounded, these derivatives can be ignored. The large-argument asymptotic

expansion for the Hankel functions (see, for example, [1], 9.2.3)

Hv (r) ~ a/2/ (nr)
j(r-v*/2-n/4) + 0 (

r
-
3/2) (22)

and the asymptotic expansion of p and a from (17) and (18)

p r — bcos(9 — /3) + 0(r~ x

), cr ~ r — ccos(0 — 7) + 0(r
_1

) (23)

as r —¥ 00, combined with (16), (20), and (21) yield

(u,v) = -
/ e

^os(9-y)-bcos(9-P)) de
(
24)

^ J7T

We shift the integration to [— 7r/2, 7t/2] and employ (19) to obtain (14).
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3.2 The inner product for a monopole and a dipole

Suppose that ur/(r) is the wave function generated by a monopole at r' G R2
,
and d G R2

is a unit vector, with cylindrical coordinates (1, v). Then the wave function generated by a

dipole at r' in orientation v is defined as

/ \ ur/(r + td) - uT>(r)
(r) = lim —

o

lim
ur, +td{*) ~ ur'(r)

t—>0 t
(25)

Theorem 3.2. Suppose that u, v are generated by a monopole at b G D and a dipole at

c G D with orientation v. Then the inner product (u, v
)
depends on v and the vector

a = b — c = {xa ,ya ). (26)

More precisely, let a = |a| and let
(f)
= arctan(?/a/xa )

be the angle formed by x-axis and a.

Then
ik /“ 7r/2

(u, v) = / e~ika sin(*-^ sin(0 - v) dO.
K d— 7T/2

In particular, when b = c and for arbitrary orientation u,

, ,
ik r>2

. ... 2ik . . .

(u, v) = / sin {d — v) d6 = — sin(i/).
77 J-n/2 ^

(27)

(28)

Proof The proof exploits the definition of a dipole, the bilinearity of the inner product, and

the inner product of two monopoles as derived above.

We define ct = c + id, at = b — c t ,
at — |at |,

and
(f>t to be the angle formed by the x-axis

and a*. Referring to Figure 4, we observe

from which

at
— a — t cos [y — (j))

‘ sin(i/ — (f>)

<ft = (f)

— arcsin
at

. at sin(0 — (ft )
— a sin(0 — (jf)

lim
t->-o t

—at sin(0-<f>t )

— sin (9 — v).

Let vt denote a monopole located at ct . Then

(u, v) = — lim
v ' t-+o

{u,vt ) - (u,v0 )

t

Combining (14) and (29) with (30) yields the desired result (27).

(29)

(30)
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Figure 4. Two dipoles b and c with orientations p and v.

3.3 The inner product for two dipoles

The computation of the inner product of two dipoles closely follows that of a monopole and

dipole given above, yielding the following theorem.

Theorem 3.3. Suppose that u, v are generated by two dipoles at b, c G D with orientations

p and v. Then the inner product (u,v) depends on the orientations and the vector

a = b — c = {xa ,ya ). (31)

More precisely, let a = |a| and let 0 = arctan(?/a/xa )
be the angle formed by x-axis and a.

Then
k2 r12k2 r < 2

(u,v) = — / e~
ika sin(*“0) sin(0 - p) sin (0 - u) dO

,

n J-n/2
(32)

where the unit vectors p and v are regarded as the angles they form with the x-axis; see

Figure 4 In particular, when b = c G D,

k2 f
n/

k2

(
u

,
v) = — / sin(0 — p) sin(0 — v) dO = — cos(p — v).

7T J- tt/2 2

3.4 The inner product for two multipoles

(33)

We refer to the function u(r) = Hm (kr) e
im0

as the wave generated by a multipole of order

m centered at r' 6 I2
,
where r — r' has cylindrical coordinates (r, 9),

r = [(a; - x')
2 + (y - y')

2

]

1/2
,

0 = arctan [{y - y’)/ (x - x’)]

.

The inner product of two multipoles centered at r' has a very simple form.

(34)
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Theorem 3.4. Suppose that u, v are generated by two multipoles of order m, n centered at

some point r' above the x-axis. Then

{

1, m = n,

2(— l)(
1+

l

m-n l)/2/(|m — n|7r), m — n odd, (35)

0, otherwise.

Proof. The proof follows that of Theorem 3.1, except that the circular arc of radius r, below

the x-axis, is centered at r' = (
x\y'). The multipoles are then given by

«(r) = Hm (kr) e
M

,
v(r) = Hn (kr) e

in)
, (36)

their normal derivatives (see, for example, [1], 9.1.27) computed from

dHm (kr
)

k—
2
{Hrn-i(kr) Hm+i(kr))

,

and the asymptotic forms of the Hankel functions given by (22). Now we obtain

(u, v) = lim -
r->oo 4 /.

2-k—arcsin(y' /r)

= lim -
r—>oo 4

»2tt

7r+arcsin(t/'/r
)

27r r dv(r

’ ^dv{r) ^du(r)
u (r)~xZ v

(
r)'

fK dr
v(r)

dr

du(r)

dr
rdO

dr
rdO

- f e
i(m-n)(e-n/2

) ^

from which the theorem is established.

(37)

4. Other Unbounded Curves

The foregoing discussion has been limited to representation of the field of compact sources

on a line. A review of the discussion reveals, however, that none of the argument is limited

to a line: each fact applies equally to other curves that divide the plane into two unbounded

regions, one of which contains the sources.

Let C C M2 be a curve with parametrization A : M —» R2
,
so that A (t) € C for t G R.

We suppose that C is simple (A is a one-to-one map), that C is unbounded (|A(i)| —> oo as

t —> ±oo), and C carves out a sector of the plane,

lim
t—t—oo

m
|A(t)l

= d_,
t-+oo

| A(t)|
= dj (38)

for some d_,d+ . Under these assumptions, C divides the plane into two regions. If u, v are

waves whose sources lie entirely in the same region, the bilinear form

Cu ,
v) = ^J

[uvn -v un \
d\C\ (39)
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is independent of C other than the unit vectors b and c. Furthermore {u, u) is positive for

0, provided that the direction of the normal to C is chosen to point away from the source

region, the integration is taken in the counterclockwise direction relative to the sources, and

b ^ c. Hence, under these conditions, the bilinear form is an inner product. We remark

that the plane could alternatively be divided into regions by a curve C satisfying (38) with

b = c, giving an infinite enclosed strip. In this case, if the sources are in the strip, then the

bilinear form is an inner product, whereas if the sources are outside, then (u,u) = 0 for all

waves u.

The follow theorem restates the results of the previous section for the inner products of

point sources, for a simple, unbounded curve of the type just presented. Its proof exactly

follows those for the line and is omitted.

Theorem 4.1. Suppose that C is an unbounded curve dividing the plane into two regions

and (u, v) is the inner product defined by (39), where u,v are point sources located at b,c

lying in one of the regions. Suppose /3 and 7 are the orientations of the unit vectors d_,d+

given in (38), where A(t) traverses C counterclockwise, for increasing t, relative to b and c.

Finally, suppose a = b — c = (xa , ya ), a = |a|, and = arctan(ya/:ra ).

1. Inner product of two monopoles. Ifu,v are monopoles, then

(u, v) = - r e
-ikac°stfi-<t>) dQ

(
40

)
ft Jp

2. Inner product of a monopole and a dipole. If u is a monopole and v is a dipole

with orientation v
,
then

(u, v) = - f
1

e~
ikacos(*-*) cos(0 - u) dO. (41)

Tt Jp

3. Inner product of two dipoles. If u, v are dipoles with orientations p, v, then

(u, v) = — e~
ikacos<*-*> cos(0 - v) cos(0 - p) dQ. (42)

77 Jp

4 . Inner product of two multipoles. If b = c and u,v are multipoles of order m,n,

then

(u, v)=- (43)
Jp

5. Analytical and Numerical Examples

While we defer actual applications to subsequent work, here we present examples illustrating

how the inner product can be used to construct a basis.

We can obtain the singular value decomposition of the operator A : L2 (D) —

>

C°°(R) of

Section 2 from the eigendecomposition of a truncated N x N Gram matrix of inner products

10



B = {(um ,un)}, where un = Aen and {en ,
n G Z} is an orthonormal basis for L2 (D). (This

procedure “squares the system,” so is not advisable in some applications.) In particular,

suppose B = WDWh
,
where W is unitary and D is diagonal. If Wi and Wj are two columns

of W, with Wi = (wu ,
. .

.

,

wNiy and Wj — (wij, . .

.

,wNjY, then we define image-space

functions s* = ^2k Wki u* for i = 1, . .
.

,

n, and obtain

n n

(«i, sj) = S Wki ('Uk ’
u*) (44)

A:=l 1=1

= Wj h B Wi

— Sij di.

where di is the «th element on the diagonal of D. Thus {si, . .
.

,

sn} is an orthogonal set in

the image space with (s*, s^) = di.

In the examples, we replace the map A from the source region (to the field region) by

a map A from the boundary of the source region, which is sufficient and simplifies the

analysis. In the domain we will have Dirichlet data (Examples 1 and 2) or a single-layer

density (Examples 3 and 4), and, in a slight abuse of notation, we use A to denote the

operator in each case.

Example 1. Suppose all sources are contained within a disk D of radius r0 centered at

r' = (0, t/o

)

with y0 > r0 . Complex exponentials {en (6) = e
xn0

,
n G Z} form an orthonormal

basis for L2(dD
)
under the usual inner product. The map A : L2(dD

)
—> C°°(R) is given

by

un (x) = (ie„)(x) = neZ
, (45)

where r = yjx2 + y0
2 and 0 = arctan(—yo/x). From Theorem 3.4,

{Umi Un )
— 1

Hm (kr0)Hn (kr0 )

1
,

2(-i)(i+l»*-»l)/2/(|m _ n |7r),

0,

m = n,

m — n odd,

otherwise.

For ro = 1, y = 3/2, and k = 10, we truncate the matrix B =
{(um ,

un)} at |n| < nmax = 25

(N = 51), for which all eigenvalues di > • • • > dn agree with other truncations with

nmax > 25 to within 5 • 10
-15

. Here d\ = 31.3 and d35 = 9.97 • 10
-15

;
the singular values

y/di , . .
.

,

y/diA are shown in Figure 6. Image-space singular functions Vi = Si/ y/di for 1, . .
.

,

8

are plotted in Figure 5.

The analogous computation was done for k = 100, for which nmax = 135 suffices. Singular

values y/di, . .
.

,

v^i45 are shown with those for A; = 10 in Figure 6 and the singular functions

Vi , . .
.

,

vs are plotted in Figure 7.

Example 2. We suppose again that all sources are contained within a disk D of radius

r0 and ask about the singular functions on two horizontal lines, one above and one below

11



Figure 5. Singular functions from Example 1 for k = 10 are shown, each divided

by monopole u0 to normalize scale and oscillations. They are plotted along the entire x-axis

as a function of 9 6 [— 7t/2,7t/2] with x = y0 ta,nQ. Real, imaginary parts shown.

D. This is the limiting case of an enclosing rectangle of fixed height and increasing width.

Reasoning from Green’s second theorem (as in Theorem 2.1) we observe that two wave

functions u
,
v from sources inside D have inner product

(
u

,
v) that is invariant through the

limiting process; in fact it can be computed most simply on the boundary dD. For multipole

sources

un (r) = Hn (k\r - r'D e
m9

,
n € Z, (46)

at the center r' of D, we obtain

(um ,
un )

= 2 5mn . (47)

(On dD the integrand of the inner product is a constant times e^m
~n ^e

,
so

(
um ,

un ) = cn 6mn .

Now employ Theorem 3.4 or, more directly, the Wronskian for Hn .) Thus the multipoles,

scaled by 1/ y/2, form an orthonormal basis on the two parallel lines.

Although the multipole un “radiates energy” that is invariant with n, its field values grow

exponentially in n on dD for \n\ > kro. The exponential growth typically makes multipoles

an unsuitable basis for a source region very different from a disk.

12
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Figure 6. The singular values of the operator A in Example 1 are shown on a log scale, in

decreasing order, for k = 10 (shorter sequence) and k = 100.

Figure 7. Singular functions as in Figure 5, but for k = 100.
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Figure 8. The singular values of the operator A in Example 3.

Example 3. Next we consider sources inside a rectangular region

R = {(x,y) : \x\ < a, \y - y0 \

< b}, y0 > b. (48)

Outside R we represent the waves with a single-layer potential, arising from a density r/ on the

boundary DR. The density is discretized on each edge of the rectangle with Gauss-Legendre

quadrature, yielding a set of monopoles as sources. This choice of discretization of the source

region is not optimal, but the size of the basis is within about a factor of three of optimal. (In

an optimal discretization the nodes would be spaced nearly uniformly on the edges similar to

nodes for bandlirnited functions; see [3]). Furthermore, the eigendecomposition of the Gram
matrix yields an optimal basis in the image space.

For a = 10, 6 = 1, y0 = 3/2, and k = 10, we choose 150 nodes on the horizontal edges

and 20 nodes on the vertical edges, so N = 340. The integral (14) for the inner product of

monopoles is discretized here with Gauss-Legendre quadrature containing 250 nodes. The

singular values >/d\, . .
. , \fd^ of the operator A : L2 (dR) —

>

C°°(M) are plotted in Figure 8.

Figure 9 shows the first two image-space singular functions i>i,u2 and the integrands on

the rc-axis of the corresponding inner products (vi,ui) and (u2 ,u2 ). Due to the elongated

source region, division by a monopole centered at the source center (0, yo ) does not eliminate

oscillations in the singular functions.

Example 4. In our final example we examine the possibility of a source being focused

to maximize or minimize the radiated energy that passes through a particular segment in

the finite plane. We again let the source be the rectangular region R of Example 3, and the

target be the segment

T = {(a;, y) : \x\ < c, y = y0 - r}, (49)

where we let c = 1 and r be a variable parameter.

14



Figure 9. Singular functions vi,v2 ,
divided by the monopole centered at (0, yo) (top), and

integrands of the corresponding inner products (vi, Vi) for i = 1, 2 (bottom) from Example

3 are shown. As for Figure 5, they are plotted as a function of 6 G [—7t/2,7t/2] with

x = y0 tan 9.

The inner product presented above lacks positivity on finite curves and in this setting is

merely a bilinear form. No analytical formula for its value is available in this case; both the

source region and the target region must be discretized. Again we choose k = 10, discretize

the source region as for Example 3, and apply Gauss-Legendre quadrature (with 20 nodes)

on the target segment. As in previous examples we obtain the eigendecomposition of the

matrix {(um ,wn)}, where um is the wave due to a monopole on dR.

In Figure 10 the maximum and minimum values of the bilinear form (u, u), for unit

preimage are shown, as a function of r. Note that the minimum value is negative throughout

the range of r. Figure 11 shows for r = 2 the waveform and the integrand of the bilinear

form for the source with the maximum radiation through the target segment.

6. Generalizations and Conclusions

The inner product generalizes immediately to three dimensions; a paper describing corre-

sponding analytical and computational tools is in preparation.

Exploitation of the inner product in applications remains to be described, but initial

explorations provide encouragement that it will prove to be of fundamental value for problems

in both acoustics and electromagnetics, scattering and inverse scattering.
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Figure 10. The maximum and minimum radiated energy through a segment as a function

of distance r to the source (Example 4).

Figure 11. Waveform having maximum radiated energy (above) and the corresponding

integrand of the bilinear form (below) for r = 2 in Example 4.
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